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Abstract

The problem with Gbit/s networks is to get the
hardware performance into the applications. The
most promising technique is a zero-copy protocol
combined with a user-space communication subsys-
tem that (a) gives the application direct access to
the network interface and (b) avoids all buffer-

ing/copying.

In this paper we examine the design space of
user-space communication subsystems, especially
how send and receive operations work and which
Further-
more, we propose a technique called page-exchange
which avoids copy operations, is well defined, and

communication semantics they imply.

has communication semantics equivalent to those
of standard programming interfaces such as UNIX
sockets, PVM, or MPL
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1 Introduction

Modern high-speed networks, such as Myrinet
[5], allow cost effective high-performance clus-
ters to be built from commodity PCs and
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workstations. Traditional communication sub-
systems (e.g. kernel based TCP/IP protocol
stack), however, are unable to deliver any-
thing close to the raw hardware performance.
To solve this problem, several user-space com-
munication subsystems have been developed.
They remove the operation system from the
critical communication path, giving the appli-
cation direct access to the network interface
and avoiding copy and buffer operations.

In terms of performance, all user-space com-
munication subsystems are superior to the tra-
ditional approach. But some of them define
a new and different semantics on send and
receive operations. The classical semantics
of send and receive operations is defined in
standardized programming interfaces such as
UNIX sockets, PVM, or MPI: Messages are
buffered at the sender and the receiver (un-
less the programmer requests something differ-
ent), such that (a) send buffers can be reused
easily, (b) sending and receiving are indepen-
dent, and (c) message reception is decoupled
from message delivery. In contrast, several of
the user-space communication subsystems de-
fine a different semantics. For example, the
BIP [12] protocol requires that ”send and re-
ceives have a rendez-vous semantics where the
receive needs to be posted before or at least 'not
too long’ after the send has bequn.” This is
not the only example. A similar passage can
be found in the Virtual Interface Architecture
Specification (VIA [14]): ”The VI Consumer
on the receiving side must post a Receive De-
scriptor of sufficient size before the sender’s
data arrives.” It should be obvious that pro-



gramming with these primitives is more diffi-
cult than with the classical, buffering primi-
tives. The alternative is to place a buffering
layer on top of these primitives which, alas, re-
duces performance back to where we started
from.

The following section explains the design
space and semantics of different send and re-
ceive operations. Section 3 will discuss the se-
mantics of ’pre-posting receive buffers’ in de-
tail, and section 4 shows that designs with clas-
sical semantics perform as well as non-standard
approaches.

2 Sending and Receiving Mes-
sages

Figure 1 shows the major components to con-
sider when designing send and receive opera-

H9PS- Sending a Message

PIO: Programmed I/O (PIO) assumes that
the network interface is mapped into the
address space of an application (user-
space principle). Transferring user data to
the network interface is accomplished by
issuing a simple copy operation together
with some control information to the net-
work interface (NI). Then the NI trans-
mits the data to its destination. The two
arrows labelled PIO in figure 1 describe
the PIO mechanism.

CopyDMA:

This technique distinguishes data transfer
from control transfer. Control (protocol)
data is written directly to the network in-
terface (using PIO). The user data is redi-
rected (copied) to a DMA buffer which re-
sides in a DMA-capable memory region.
Usually this buffer resides within the ker-
nel, but in most systems a pinned consecu-
tive memory region is sufficient. After the
copy stage the NI fetches the data using a
DMA operation. CopyDMA is illustrated
by the arrows labelled ControlPIO, Copy,
and the DMA arrow in figure 1.
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Figure 1: Data transfer during send and receive
operations



DirectDMA: DirectDMA assumes that all
data an application has to send reside in
pinned, DM A-capable memory such as the
DMA buffer in figure 1. By allocating a
DMA buffer at application startup, the
send mechanism avoids the copy operation
between application and kernel memory.
Thus DirectDMA uses only the Control-
PIO and the DMA arrow in figure 1.

V2PDMA: This technique replaces the Data-
PIO arrow in figure 1 with a DMA op-
eration. In order to do this, a transla-
tion of virtual to physical addresses ( V2P)
is needed, which is accomplished within
the operating system kernel. Further-
more, the selected pages have to be pinned
down (marked unpageable) to prevent the
pager process from replacing them during
a DMA transaction. After the DMA op-
eration has finished, the pages are either
unpinned to free resources or may stay
pinned in case of a page reuse (to avoid
a second V2P translation).

PEXDMA: Page-exchange-DMA uses the
same mechanism as V2PDMA, except
that the pinned-down pages are marked
as copy-on-write. This has the effect that
the pages are duplicated if the applica-
tion tries to modify the content during
an ongoing DMA transaction. Thus the
DMA operation always transfers correct
data and PEXDMA provides the classical
semantics of send operations (safe reuse
of send buffers). After the DMA opera-
tion has finished, the copy-on-write flag is
checked to detect if the pages have been
duplicated. In that case, pages are un-
pinned and released to the system pool
of free pages. Otherwise the copy-on-
write flag is cleared and the application
can reuse the pages. As within V2PDMA,
reused pinned pages may or may not be
unpinned.

CopyDMA is the classic technique; all commu-
nication subsystems for LAN and WAN net-
works are based on this principle. With a

slight modification, which allows bypassing the
protection boundary between kernel and user
memory, it is used in high-speed communi-
cation subsystems such as Generic AM [15],
PM [13], and ParaStation2 [16]. The PIO ap-
proach is also used in user-level communica-
tion subsystems, such as FM [11], LFC [2],
and AM-IT [6]. PIO and CopyDMA offer a
message-passing model, whereas DirectDMA
has a memory-mapped communication model
in mind. Examples for Direct DMA are SCI [9],
SHRIMP [4], VMMC [7] and Digital’s Memo-
ryChannel [10]. V2PDMA is used within BIP
[12] and VMMC-II [8]. PEXDMA is being ex-
plored with ParaStation2.

Besides the different communication mod-
els — message passing vs. memory mapped
communication — there is a difference in how
send buffers are handled during a send oper-
ation. With PIO, CopyDMA, or PEXDMA
it is safe for an application to reuse its send
buffers as soon as the send operation returns.
Thus, these techniques provide the ’classical’
semantics of send operations. In DirectDMA
and V2PDMA, however, the application has
to test whether a send buffer can be reused by
calling some kind of DMA-Ready() operation.
Although Direct DMA and V2PDMA may have
performance advantages, they have different
send semantics, namely that the application
has to be careful when reusing send buffers. In
contrast, PEXDMA is likely to offer the same
performance level as V2PDMA, but it provides
the ’classical’ send semantics of PIO and Copy-
DMA.

2.2 Receiving a Message

Receiving messages with PIO, CopyDMA, Di-
rectDMA, and V2PDMA works similar to
sending, except that the data flow is reversed
(see figure 1). PIO is normally not used for re-
ceiving because of unacceptable transfer rates
1, 3].

At the sender, PEXDMA can be viewed
as a refinement of V2PDMA. As receive op-
eration, however, the PEXDMA technique is
an improvement over CopyDMA. PEXDMA



avoids the copy step of the CopyDMA ap-
proach (see receiver in figure 1). The DMA
operation which transfers the incoming data
from the NI to the DMA buffer is unchanged.
If the application issues a receive operation,
PEXDMA exchanges DMA buffer pages with
application memory pages whenever possible.
In order to do this, a translation of virtual
to physical pages as well as a modification of
the application’s page tables are needed. This
is accomplished within the operating system
kernel. Upon a page exchange each affected
DMA buffer page is unpinned (because it now
belongs to application memory), each affected
application page is pinned down (because it
is now used as part of the DMA buffer), the
application’s page table is modified (because
the virtual address of the exchanges page has
now a different physical representation), and
the buffer addresses in NI memory are up-
dated. After these modifications, the applica-
tion has 'received’ its data, while the size of the
DMA buffer remains constant. Nevertheless,
the PEXDMA mechanism also has some draw-
backs. First of all there is a performance trade-
off between CopyDMA and PEXDMA (similar
to that of PIO vs. DMA); for a small amount
of data CopyDMA is likely to be faster than
the PEXDMA mechanism (due to the neces-
sary system call). Furthermore, a prerequisite
for PEXDMA is that the receive memory in
application space must be page aligned; oth-
erwise a fallback mechanism to Copy-DMA is
invoked.

The semantic differences of the five tech-
niques become obvious when looking at the
possibility of explicit or implicit receive buffer-
ing in host memory. If receive buffering is pos-
sible, the reception of messages from the net-
work is completely decoupled from the deliv-
ery of these messages to the application. An
incoming message is stored in an intermediate
buffer and if the application issues a receive
operation, a prior buffered message can be de-
livered. If receive buffering is not possible, the
receiving application has to be ready to receive
at the time a message arrives. There is no de-
coupling of message reception and message de-

livery any more. Receiving a message in these
models is either accomplished by a rendez-vous
principle between sender and receiver (the re-
ceiver has to be started before the sender will
transmit the data) or receive buffers have to be
pre-posted so that an incoming message can be
stored in these pre-posted buffers. In addition,
the size of the pre-posted buffers have to fit the
size of incoming messages.

CopyDMA (AM, FM, PM, ParaStation2)
and PEXDMA use receive buffering whereas
Direct-DMA (SCI, VMMC, MemoryChan-
nel) and classical V2PDMA (BIP) does not.
VMMC-IT [8] uses a hybrid method of Copy-
DMA and V2PDMA called transfer redirec-
tion, which buffers incoming messages in case
that the application is not yet ready to receive.
Otherwise the message is directly transferred
to application memory. PEXDMA is being ex-
plored with ParaStation2.

3 Communication Setup

Communication models which omit default
buffering in host memory at the receiver have
to define how the user-level receive buffers
have to be established. This is necessary,
because the communication hardware has to
know where to store incoming messages before
the message arrives.

Using a memory mapped communication
model, such as DirectDMA, the receive buffers
are established at application startup. For
each memory area which is shared with an-
other node, an appropriate mapping is defined.
So called inbound mappings grant other nodes
write access to a specified memory area and
outbound mappings request write access to a
memory area from another node. Obviously
an inbound mapping on node A has to cor-
respond to an outbound mapping on node B.
Once all the application instances are started
and all corresponding mappings have been es-
tablished, the startup phase completes. After
that no further handling of communication re-
lationships is needed — as long as the model
does not allow dynamic process creation — and



incoming messages are delivered directly to the
application.

V2PDMA instead requires that prior to each
communication sufficient receive buffers of ap-
propriate size are preposted to the communi-
cation subsystem. The problem with this de-
mand is twofold. First, for each communica-
tion request the total amount of data packets
being received as well as the size of each data
packet has to be known in order to be able to
prepost the necessary receive buffers. In case
of regular communication patterns (e.g. ring-
shift) with a fixed amount of data to transmit,
calculating the necessary buffers to prepost is
simple. But with irregular, data dependent
communication patterns and variable amounts
of transmitted data this task can be hard if not
impossible. The second problem concerns the
point in time when it is safe to start a com-
munication operation. Using the same exam-
ple as above (ring-shift), each sender has to
be sure that it’s communication partner (the
next node, assuming a ring-shift) has posted
the necessary receive buffers before it can start
sending messages. The question is how to en-
sure this — other than using a synchronization
primitive, which involves a communication op-
eration for which the necessary receive buffers
have to be preposted. This results in the clas-
sical chicken and egg situation. How to solve
this problem is often left open by communi-
cation subsystems proposing V2PDMA with
buffer preposting. Obviously, there are practi-
cal solutions to this problem but this does not
provide a well defined semantics of preposting
receive buffers in general.

In contrast to the shown difficulties of
V2PDMA, receiving messages in all other com-
munication models is well defined, much sim-
pler and in our opinion more intuitive. Fur-
thermore, very few existing applications are as-
sumed to fit a model with preposting receive
buffers.

4 Performance

Although the main focus of this article is on
the semantics of different send and receive op-
erations the major goal of all user-space com-
munication subsystems is performance. If one
method clearly outperforms another, it is hard
to find arguments for the slower approach. But
if two methods perform roughly the same, an
application programmer is likely to prefer the
one with the more common or more convenient
semantics.

In our evaluation, we use a pair of Pen-
tium IT systems, running at 350 MHz and using
the BX chipset (ASUS P2B-LS board). Each
system is equipped with 128 MByte DRAM,
4 GByte UW-SCSI disk, FastEthernet, and
a Myrinet adapter. The PCI bus runs at
33 MHz and is 32 bit wide, which results in
133 MByte/s maximum bandwidth. The oper-
ating system is Linux-2.0.35.

Figure 2 shows the performance for the dif-
ferent send techniques presented in section 2.1.
During send analysis, only the protocol infor-
mation is passed to the host code at the re-
ceiving side. This resembles an receiver with
an infinite bandwidth to receive user data, and
the sender performance is not limited by the
chosen technique at the receiving side.
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Figure 2: Performance at sending side

Surprisingly, all DMA based sending tech-
niques perform roughly the same (within a few
percent). This proves the assumption that
copy operations while pipelining them with



successive DMA operations hardly affect the
overall performance. Only PIO behaves dif-
ferently and shows a clear advantage for small
packets (up to 1024 byte), but for large pack-
ets the throughput saturates at 50 MByte/s.
The maximum throughput for the DMA
based techniques is 91 MByte/s (CopyDMA),
92 MByte/s (DirectDMA), and 87 MByte/s
(V2PDMA and PEXDMA) respectively. The
message transfer unit (MTU) was limited to
4096 Byte, because for page based approaches
such as V2PDMA and PEXDMA it’s hard to
handle larger MTU sizes. As the figure shows,
the DMA based approaches do not show a sat-
uration effect, so increasing the MTU further
will result in an increased throughput until the
PCI bus saturates.

Figure 3 shows the performance for the
different receive techniques presented in sec-
tion 2.2. During receive analysis, only the pro-
tocol information is passed to the network in-
terface at the receiving side. This resembles a
sender with an infinite bandwidth to transmit
user data, and the receiver performance is not
limited by the chosen technique at the sending
side.
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Figure 3: Performance at receiving side

Again, all techniques show an equivalent
level of performance. As on the sending side,
copy operations hardly affect the overall per-
formance while pipelining them with previ-
ous DMA operations. The lower performance
of V2PDMA might be due to the difficult
handling of receive buffers to keep the trans-

mission pipeline running, and we are sure
that further optimizations for V2PDMA ex-
ist that will result in the same performance
as the other implementations. The maximum
throughput of most techniques (DirectDMA,
CopyDMA, and PEXDMA) is 99 MByte/s,
and 91 MByte/s for V2PDMA. These numbers
are up to 12 MByte/s higher than the maxi-
mum throughput on the sending side. Thus,
overall performance of a data transmission is
limited by the sender and not the receiver.

As said earlier in this section, the major mo-
tivation for implementing different send and re-
ceive techniques was performance. But accord-
ing to the presented results, the differences are
negligible. True zero copy techniques (Direct-
DMA and V2PDMA) do not outperform tech-
niques which use copy operations, as long as
the copy operations are pipelined with previ-
ous or successive DMA operations. Thus, the
major motivation for choosing a specific com-
munication model is likely to depend on the
semantics of that model.

5 Conclusion

In this paper we examine the design space of
user-space communication subsystems, espe-
cially how send and receive operations work
and which communication semantics they im-
ply. We identify five different models, namely
PIO, DirectDMA, CopyDMA, V2PDMA, and
PEXDMA which have a different semantics
at the sending and the receiving side. While
sending a message, PIO, CopyDMA, and
PEXDMA offer the ’classical’ send semantics
known from common communication subsys-
tems such as UNIX sockets, PVM, and MPI
(on default). They buffer the outgoing data
so that the application is free to reuse its send
buffer without any restriction. In contrast to
that, DirectDMA and V2PDMA force the ap-
plication to ensure that a previously used send
buffer can be reused safely.

At the receiving side the semantic differences
are due to explicit or implicit receive buffer-
ing in host memory. Again, CopyDMA and



PEXDMA offer the ’classical’ receive seman-
tics, because incoming messages are buffered
in host memory. Within DirectDMA, receive
buffers have to be established during appli-
cation setup, and afterwards incoming mes-
sages are delivered directly to the applica-
tion. This condition implies that the appli-
cation has to know a priori which parts of its
memory are shared (read or write) and which
node is going to access a shared memory re-
gion. If this mapping is known at application
startup, Direct DMA works fine. Otherwise, a
transmission buffer has to be established and
in this case DirectDMA behaves exactly like
CopyDMA. In contrast to all other methods,
V2PDMA requires that prior to each communi-
cation sufficient receive buffers of sufficient size
are preposted to the communication subsys-
tem. Otherwise, an additional software layer
is needed which emulates a buffering commu-
nication subsystem.

Prior to the writing of this paper, there
was a strong evidence that CopyDMA and
PEXDMA offer the same level of performance
as DirectDMA and V2PDMA, while still pro-
viding the ’classical’ communication semantics.
Now the evidence has turned to confidence and
the conclusion is that CopyDMA or PEXDMA
are superior to other models, because applica-
tion programmers do not have to rewrite their
code to fit a new communication semantics.
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