In: Proceedings of the International Conference on Parallel and
Distributed Processing, Techniques and Applications (PDPTA’96), August
9-11th 1996, Sunnyvale, CA, Vol. I, pp. 375-386, best paper award.

The ParaStation(™) Project: Using Workstations as
Building Blocks for Parallel Computing

Thomas M. Warschko, Joachim M. Blum, and Walter F. Tichy
University of Karlsruhe, Dept. of Informatics
Am Fasanengarten 5, 76128 Karlsruhe, Germany
email: {warschko,blum,tichy}@ira.uka.de
URL: http://wwwipd.ira.uka.de/parastation

Abstract

The ParaStation communication fabric provides a high-speed com-
munication network with user-level access to enable efficient parallel
computing on workstation clusters. The architecture, implemented
on off-the-shelf workstations coupled by the ParaStation communi-
cation hardware, removes the kernel and common network protocols
from the communication path while still providing full protection
in a multiuser, multiprogramming environment.

The programming interface presented by ParaStation consists of
a UNIX socket emulation and widely used parallel programming
environments like PVM, P4, and MPI. This allows porting a wide
range of client/server and parallel applications to the ParaStation
architecture. The first implementation of ParaStation using Digi-
tal’s AlphaGeneration workstations achieves a communication la-
tency as low as 2.5us (process-to-process) and a sustained band-
width of more than 10 Mbyte/s per process. Benchmarks using
PVM on ParaStation demonstrate real application performance of
1 GFLOP on an 8-node cluster.

Keywords: Workstation Cluster, Parallel and Distributed Computing, User-Level Com-
munication, High-Speed Interconnects.

1 Introduction and Motivation

Workstation clusters in conjunction with high-speed interconnection networks offer a
cost-effective and scalable alternative to monolithic supercomputers. In contrast to su-
percomputers and parallel machines, clustered workstations rely on standardized com-
munication hardware and communication protocols developed for local-area networks
and not for parallel computing. As communication hardware is getting faster and faster,

the communication performance is now limited by the processing overhead of the op-
erating system and the protocol stack, rather than the network itself. Thus, users who
upgrade from ethernet to, e.g., ATM failed to observe an application speedup compara-
ble to the improvement of the raw communication performance. The peak bandwidth in
high-speed networks is often achieved only with extremely large data streams, and there
is no improvement at all when communication is based on relatively small data units.
Exchanging relatively small messages, however, is a key issue in parallel computing.
Besides, this holds also for the object-oriented cooperative approach on platforms like
CORBA. Objects as communication units result in transmitting rather small messages
between cooperating nodes. Another network-related problem within parallel computing
is the scalability of the network when adding more and more stations. A typical SPMD-
like parallel program consists of a sequence of computing and communicating parts. As
a consequence, all nodes involved either compute intermediate results, using no network
at all, or they exchange data with each other, generating a burst-traffic situation on the
network. Burst traffic in traditional LAN topologies sharing one physical medium (e.g.,
bus and ring) results in a worst-cast behaviour of the network which means large laten-
cies and less throughput. In contrast, MPP networks use higher-dimensional topologies
such as grids or hypercubes, where bandwidth and bisection-bandwidth increases with
the number of connected nodes. Thus, critical parameters for a network well-suited for
parallel computation are

e latency, when transmitting small messages,
e throughput, when transmitting large data streams, and

e scalability, when increasing the number of connected workstations.

In addition to these hardware-related parameters, the functional behavior of the
network should allow for implementing reduced or even minimal protocol stacks. To
avoid processing overhead in a protocol stack, the underlying network has to maintain as
much functionality as possible. In contrast to most local-area networks, MPP networks
offer reliable data transmission in combination with hardware-based flow control. As
a consequence, traditional protocol functionality such as window-based flow control,
acknowledgement of packages, and checksum processing can be reduced to a minimum
(or even be left out). If the network further guarantees in-order delivery of packets,
the fragmentation task and especially the defragmentation task of a protocol is much
easier, because incoming packets don’t have to be rearranged into the correct sequence.
Implementing as much protocol-related functionality as possible directly in hardware
results in minimal and thus efficient protocols.

The most promising technique to improve the performance of the network interface
as seen by a user is to move the protocol processing into the user’s address space. The
ParaStation system in fact does all protocol processing at user level while providing full
protection. Another critical issue is the design of the user interface to the network. Often
vendors support proprietary APIs (e.g., AAL5 for ATM), but for reasons of portability
a user would prefer a standardized and well-known interface. Thus, the key issues for
the design of an efficient communication subsystem for the ParaStation architecture are

e sharing the physical network among several processes,

e providing protection between processes using the network simultaneously,

e removing kernel overhead and traditional network protocols from the communi-
cation path, and

e providing a well-known programming interface.

To reach the goal of efficiency, the kernel is removed from the communication path
and all hardware interfacing and protocol processing is done at user level. Even protec-
tion is done within the system library at user level using processor-supported atomic
operations to implement semaphores. Besides proprietary user interfaces, we decided to
provide an emulation of the standard Unix socket interface on top of our system layer.

This paper describes the ParaStation architecture and related approaches (sec-
tion 2), starting with a description of the ParaStation network (section 3) and the
ParaStation software architecture (section 4). Various benchmarks are presented in sec-
tion 5.

2 Related Work

There are several approaches targeting efficient parallel computing on workstation clus-
ters which can be classified as shared-memory and distributed-memory systems. Shared-
memory systems such as MINI [11], SHRIMP [4], SCI-based SALMON [10, 13], Digital’s
MemoryChannel [15], and Sun’s S-Connect [12] support memory-mapped communica-
tion, allowing user processes to communicate without expensive buffer management and
without system calls across the protection boundary separating user processes from the
operation system kernel.

In contrast to these approaches, distributed memory systems such as Active Mes-
sages [16] for ATM-based U-Net [2], Illinois Fast Messages [14] for Myrinet [5], and the
Berkeley NOW project [1] focus on a pure message-passing environment rather than a
virtual shared memory. As von Eicken et al. pointed out [16], recent workstation op-
erating systems do not support a uniform address space, so virtual shared memory is
difficult to maintain.

As with Active Messages and Fast Messages, performance improvement within the
ParaStation system is based on user-level access to the network, but in contrast to them,
we provide multiuser/multiprogramming capabilities. Like Myrinet and S-Connect, our
network was originally designed for a MPP System (Triton/1) and is now retargeted to
a workstation cluster environment. Myrinet, IBM-SP2, and Digital’s Memory Channel
use central switching fabrics, while ParaStation provides distributed switches on each
interface board.

3 The ParaStation Network

The network topology is based on an two-dimensional toroidal mesh. For small systems,
a ring topology is sufficient. Data transport is done via a table-based, self-routing pack-
et switching method which uses virtual cut-through routing. Every node is equipped
with its own routing table and three input buffers (see figure 1): two for intermediate

storage of data packets coming from other nodes and one for receiving packets from
its associated processing element (workstation). An output buffer delivers data packets
to the associated workstation. The buffering decouples network operation from local
processing. Packets contain the address of the target node, the number of data words
contained in the packet, and the data itself. The size of the packet can vary in the range
from 4 to 508 bytes. Packets are delivered in order and no packets will be lost. Flow
control is done at link level and the unit of flow control is one packet.

From Processor i To Processor i
— |
. Channel 0

Channel 0 Switch
Channel 1
Channel 1 —=

Figure 1: ParaStation network

For both topologies — ring and toroidal mesh — we provide a deadlock-free routing
scheme. Deadlock-free routing on a ring is simple as long as the network is prevented
from overloading. Inserting new packets into the network only when both channel fifos
are empty solves this problem. Deadlock-free routing on a toroidal mesh is done by
using X-Y dimension routing. A packet is routed along the x axis of the grid first
until it reaches its destination column. Then it is routed along the y axis to its final
destination node. Providing similar insertion rules as in the ring routing scheme for
both dimensions and giving the y axis priority over the x axis prevents deadlocks.

The current implementation of our communications processor involves a routing
delay of about 250ns per node and offers a maximum throughput of 20 Mbyte/s per
link. Additionally, the interface board provides a hardware mechanism for fast barrier
synchronization. To connect several systems, we use 60-pin flat cables, with standardized
RS-422 differential signals. Using this technology, the maximum distance between two
systems is 10m.

4 The ParaStation Architecture

The goal is to support a standardized, but efficient programming interface like UNIX
sockets on top of the ParaStation network. The ParaStation network is dedicated to par-
allel applications and is not intended as a replacement for a common LAN;, so associated
protocols (e.g., TCP/IP) can be eliminated. These properties allow using specialized
network features, optimized point-to-point protocols, and controlling the network at us-
er level without operating system interaction (see figure 2). The ParaStation protocol
software implements multiple logical communication channels on a physical link. This is
essential to set up a multiuser/multiprogramming environment. Protocol optimization
is done by minimizing protocol headers and eliminating buffering whenever possible.
Sending a message is implemented as zero-copy protocol which transfers the data di-
rectly from user-space to the network interface. Zero-copy behaviour during message
reception is achieved when the pending message is addressed to the receiving process;
otherwise the message is copied once into a buffer in a common message area. Within

Workstation ParaStation

H
E<

User-Library
User Libc Systemlibrary
System H
TCPIP Networkprotocols
Devicedriver
Hardware

Figure 2: Network interfacing techniques

the ParaStation network protocol, operating system interaction is completely eliminat-
ed, removing it from the critical path of data transmission. The functionality missing
to support a multiuser environment is realized at user level in the ParaStation system
library.

The ParaStation system library (see figure 3) consists of three building blocks: the
hardware interface layer, the central system layer, and the standardized user interface
(sockets).

nUsers,
m Applications,
p Processes per Application

1 User,
ParaStation-PVM 1 Application

Socket - Emulation ‘

1
1
1
1
1
1
:
ParaStation System Layer (Ports) o -~ i

Hardware Interface Layer

Figure 3: ParaStation system library

4.1 Hardware Layer

The hardware layer provides the necessary abstraction of the underlaying hardware to
maintain a transparent and system independent interface to the upper layers. The func-
tionality implemented in this layer consists of highly optimized send /receive operations,
status information calls, and an initialization call. Information calls look for pending
messages and check if the network is ready to accept new messages and initialization is
used to map communication buffers into user space.

Since messages at this level are addressed to nodes rather than individual commu-
nication channels, message headers simply contain the address of the target node, the
number of data words contained in the packet, and the data itself. When sending a
message, data is copied directly from user-space memory to the interface board and
the receiving function does the same vice versa, eliminating all intermediate buffering.

As a consequence, multiple applications using this layer are not supported, but it is
nevertheless possible to use this layer as application programming interface.

4.2 System Layer (Ports)

The system layer establishes multiple communication channels between applications
and supports a multiuser/multiprogramming environment. Instead of using operating
system capabilities to set up a multiapplication interface, we decided to reassemble
operating system functionality at user level to meet our primary design goal of efficiency.

To support individual communication channels (called ports in ParaStation), the
system layer maintains a minimal software protocol which adds information about the
sending and receiving port in each packet. This concept is sufficient to support multiple
processes by using different port ids for different processes. Since message reception is
done in user-space, and at least the protocol information has to be received to determine
the destination port of the message, it is possible that process A receives a message
addressed to a port which is owned by process B. To solve this problem, we use a
common message area to buffer this kind of messages. To maintain a correct interaction
between processes while sending or receiving messages, critical sections in this protocol
layer are locked by semaphores. For reasons of efficiency, we also implemented these
semaphores at user-level, using processor-supported atomic operations. Deadlock-free
communication while sending large messages which cannot be buffered by the hardware
is ensured by a combination of sending and receiving message fragments. Prerequisite
for sending a message fragment is that the network will accept it. Otherwise incoming
messages are processed first to prevent the network from overloading and blocking.

For performance reasons, a so-called rawdata port can be used to obtain as little
overhead as possible. The rawdata port and upper layers can be used simultaneously,
while rawdata applications are scheduled one after another.

As a result, the implementation of these concepts does not need system calls at all.
Furthermore, we provide a zero-copy behavior (no buffering) whenever possible. This
leads to high bandwidth and low latencies.

4.8 Socket Layer

The socket layer provides an emulation of the standard UNIX socket interface (TCP
and UDP connections), so applications using socket communication can be ported to
the ParaStation system with little effort. For connections outside a ParaStation cluster,
regular operating system calls are used. Send/recv calls, which can be satisfied within
the ParaStation-cluster, do not need any interaction with the operating system.

4.4 Application Layer

ParaStation implementations of standard programming environments like PVM [3], P4
[6], TCGMSG [9], or MPI (mpich) [8] use ParaStation sockets for high-speed commu-
nication. This approach allows us to easily port, maintain, and update these packages.
We use the standard workstation software.

5 Benchmarks

The benchmarks described in this section cover three different scenarios. The communi-
cation benchmark provides information about the raw performance of ParaStation. Al-
though we call this raw performance, the benchmark reflects application-to-application
performance measured at the hardware interface layer. Second, we present the level
of performance that can be achieved at ParaStation’s different software layers. The
third scenario deals with application performance, namely run-time efficiency. Low-
level benchmarks were taken on two different DEC Alpha clusters (275-MHz 21064A
processors and 233-MHz 21066 processors) as well as on a two-node Pentium system
(120-MHz) running Linux (Version 1.3.94). For the application benchmarks we used an
8-node ParaStation cluster with 275-MHz DEC Alpha machines running Digital Unix
3.2c (OSF/1).

5.1 Communication Benchmark

To measure the end-to-end delay, we implemented a Pairwise Erchange benchmark,
where two processes send a message to each other simultaneously, and then receive
simultaneously. Unlike a Ping-Pong benchmark, process two does not wait for receipt
of a message before transmitting. This is a more practical scenario for two processes
exchanging messages. Benchmark results for three different systems are presented in
figure 4.

Transmission Lalency Transmission Throughp ut

100 T T T T 16 T T T T

80 word transfer A\pha21064A 275MH ﬁ—‘ word tré ansfer Alpha 21064A 275MHZ %7
block transfer, Alpha 21064A, 275MHz -+ block transfer, Alpha 21%4} 275MHz ,,
60 - word rransle Alpha 21066, 233MHz" D
block transfer, Alpha 21066, 233M)“ %
word transfer, Intel Pentium, 120! - word transfer, Intel Pentium, 120MHz
40 - block transfer, Intel Pen tium, 1201 Z - q block transfer, Intel Pentium, 120MHz

word transfer .Alpha 21066, 233MHz - B
block transfét, Alpha 21066, 233MHz

*%x

""""""""""""

Lats
Throughput in Mbyte/s
®
|

.
1 2 4 8 16 32 64 128 256 508 1 2 4 8 16 32 64 128 256 508
Message size in byte Message size in byte

Figure 4: ParaStation communication benchmark

For small message sizes (4 byte), ParaStation achieves transmission latencies (sending
and receiving a message in user space) as low as 2.5us on systems with the 21064A,
1.9us on systems with the 21066, and 1.7us on systems with the Pentium processor.
Thus, the latency for one communication operation — either a send or a receive — is just
half of the presented numbers: 1.24us for the 21064A, 0.97us for the 21066, and 0.87us
for the Pentium system. For larger message sizes, when overhead per byte decreases,
we get a total throughput of up to 10.5 Mbytes/s (21064A), 12.5 Mbytes/s (21066),
and 15.6 Mbytes/s (Pentium) respectively. The performance differences are due to the
internal architectures of the processors and the motherboard. The Alpha 21066 has
the PCI interface on chip, whereas the Alpha 21064A is using a board-level chip set.
In contrast to what would be expected looking at pure processor speed, the PC-based

system outperforms the Alphas, although they are using a board-level chip set! as the
21064 A systems does.

5.2 Performance of the Protocol Hierarchy
Switching from singleprogramming to multiprogramming environments often suffers

from a drastic performance decrease. Table 1 presents performance figures of all software
layers in the ParaStation system.

Table 1: ParaStation performance of various layers

Alpha 21064A, 275 MHz Pentium, 120 MHz
ParaStation OS/Ethernet ParaStation OS/Ethernet
protocol- latency | band- | latency | band- || latency | band- | latency | band-
layer width width width width
[us] | [MB/s] | [us] | [MB/s] | [us] | [MB/s]| [us] | [MB/s]
hardware 1.24 10.5 0.87 15.6
rawdata 4.15 9.6 3.056 14.5
port 8.85 8.9 7.65 11.7
socket 11 8.8 283 0.99 7.65 11.7 159 1.08
P4 108 7.5 344 0.95
PVM 129 6.7 539 0.84 102 7.7 388 0.86
socket (self) 6.4 85 195 33 4.82 88 288 30

To support a true multiprogramming environment, our system layer (ports) only adds
about 7.6us additional latency to communication calls, and the loss of throughput
compared to the hardware abstraction layer on the Alpha system is within 15% (25%
on the PC system). Furthermore, our decision to maintain the rawdata port is justified
by the results shown. The rawdata port is twice as fast in latency than regular ports
and the loss of throughput drops to 8.5% (7.5% on the PC system) compared to the
performance of the hardware abstraction layer. 4.15us (3.05us) latency of the rawdata
port is even less than 4.5us (3.9us) for a null system call on the Alpha (PC). Most of this
time is used to guarantee mutual exclusion and correct interaction between competitive
processes.

The real advantage of ParaStation becomes obvious when comparing the perfor-
mance to that of regular operating system calls. ParaStation socket calls on the DEC
Alpha are about 26 times faster in latency than the regular OS calls, while offering
the same services. Similar results are measured on the PC system where ParaStation is
about 21 times faster in latency than equivalent operating system calls. Throughput,
however, is not comparable because the ParaStation network is much faster than Eth-
ernet. Even the relative loss in throughput is not comparable because it is much harder
to interface to a fast network than to a slower one.

Another interesting result is additional overhead caused by the programming envi-
ronments P4 and PVM. Within ParaStation on the Alpha system, these environments
add an overhead of factor 9.8 (P4) and 11.7 (PVM) to the latency of our system layer.
Even in the standard operating system environment, P4 adds about 21% and PVM

'We use ASUS boards with an Intel Triton chip set.

116% overhead. Similar results are measured on the PCs where PVM adds an overhead
of factor 13.3 to the latency and 144% overhead to the regular operating system, respec-
tively. PVM even decreases throughput when built on top of the ParaStation sockets by
24% on the Alpha system and 34% on the PC system. This shows that both packages
are not well designed for high-speed networks.

Finally, we measured the performance of a socket-to-socket communication within a
single process, where no network hardware is needed at all. This test aims to measure the
protocol performance for local communication in absence of process switching. Local
communication on ParaStation is optimized and enqueues the send message directly
into the receive queue of the receiving socket. Thus, the presented 85 Mbyte/s (88
Mbyte/s on the PCs) reflects mainly the memcopy performance of the system. The
TCP/IP implementation within both Digital Unix and Linux seem to optimize local
communication because a throughput of 33 MBytes/s (30 MBytes/s on the PC) is
achieved with this benchmark test.

5.8 Application Benchmarks

Focusing on latency and throughput only is too narrow for a complete evaluation. It is
necessary to show that a low-latency, high-throughput communication subsystem also
achieves a reasonable application efficiency. Our approach is twofold. First, we took a
heat diffusion benchmark to test application performance on our proprietary interface.
Second, we installed the widely used and publicly available ScaLAPACK math library,
which first uses the BLACS package and then PVM as communication subsystem. Thus,
the complete protocol hierarchy as presented in the previous section is involved.

All application benchmarks were executed on an 8-node Alpha 21064A (275 MHz)
cluster.

5.3.1 Heat Diffusion

The heat diffusion benchmark starts with an even temperature distributions on a metal
plate. On all four sides heat sources and heat sinks are applied. The goal is to compute
the final heat distribution of the metal plate. This can easily be done with a Jacobi or
Gauss-Seidel iteration by calculating the new temperature of each gridpoint as average
of its four neighbours.

Parallelizing this algorithm is simple: we use a block distribution of rows of the
n X n matrix, so during each iteration each process has to exchange two rows with its
neighboring processes. To visualize the progress, all data is periodically collected by
one process. The following table shows the effective speedup for different problem sizes.
Each experiment was measured with at least 5000 iterations, visualizing the progress
every 20 iterations.

As shown in table 2, we achieve a reasonable speedup for relevant problem sizes on all
configurations. Taking the last row as an example, the efficiency of two workstations is
close to its maximum (97.5%). In the four and eight-processor configurations, we achieve
speedups of 3.75 with 4 nodes and 7.4 with 8 nodes and therefore an efficiency of 93.75%
(4 nodes) and 92.5% (8 nodes), respectively. The gap is caused by the visualization
process which is an inherent sequential task. In general, there are only two points

Table 2: Heat diffusion benchmark

1 workstation 2 workstations 4 workstations 8 workstations

Problem Runtime | Runtime | Speedup | Runtime | Speedup | Runtime | Speedup

size (n) [ms/iter] | [ms/iter] [ms/iter] [ms/iter]

64 1.5 0.99 1.51 0.9 1.66 2.0 0.75
128 6.0 3.5 1.71 2.3 2.61 3.4 1.77
256 22.3 12.0 1.86 7.5 2.97 7.0 3.19
512 89.2 46.7 1.91 26.4 3.38 17.2 5.19
1024 424 217 1.95 113 3.75 57.3 7.40

where performance decreases when switching to the next larger configuration. But this
only happens for small problem sizes where parallelizing is doubtful.

5.3.2 ScaLAPACK

The second application benchmark for ParaStation, zslu taken from ScaLAPACK, is
an equation solver for dense systems. Numerical applications are usually built on top of
standardized libraries, so using this library as benchmark is straightforward. Major goals
within the development of ScalLAPACK [7] were efficiency (to run as fast as possible),
scalability (as the problem size and number of processors grow), reliability (including
error bounds), portability (across all important parallel machines), flexibility (so users
can construct new routines from well-designed parts), and ease of use. ScaLAPACK
is available for several platforms, so presented results are directly comparable to other
systems.

Table 3: ScaLAPACK benchmark

Problem 1 workstation 2 workstations 4 workstations 8 workstations
size (n) | time [s] | MFlop | time [s] | MFlop | time [s] | MFlop | time [s] | MFlop
1000 5.0 134 3.36 199 2.95 226 2.74 244
2000 34.4 155 20.8 257 13.6 394 9.80 545
3000 109 165 62.3 289 39.2 459 27.9 647
4000 138 309 84.0 508 54.6 782
5000 152 547 96.4 865
6000 251 573 157 920
7000 234 978
8000 334 | 1022
Ethernet | n=3000 165 n=4000 232 n=6000 320 n=8000 261

Table 3 confirms that performance scales well with problem size as well as number
of processors. Comparing the achieved MFLOPs of the two, four, and eight-processor
clusters to the maximum performance of a single processor (165 MFLOP) results in
efficiency factors of 94% (2 nodes), 87% (4 nodes), and 77% (8 nodes), respectively. It
is remarkable that we get more than a GFLOP for the 8-processor cluster. These are
real measured performance figures and not theoretically calculated numbers. The last
row shows the performance one can get using ScaLAPACK configured with standard
PVM (Ethernet). The best performance in this scenario is reached at problem size of
n=6000 on a 4-processor cluster. Using more processors results in a drastic performance

loss due to bandwidth limitation on the Ethernet. For ParaStation, we see no limitation
when scaling to larger configurations. And it is even possible to improve the ParaStation
performance by using a better interface than PVM.

In general, using various application codes such as digital image processing and finite
element packages, we achieved relative speedups of 3 to 5 on ParaStation over regular
PVM or P4 on our 4-node and 8-node ParaStation clusters. In all of these studies, we
used the same object codes, just linking them with different libraries.

6 Conclusion and Future Work

The integrated and performance-oriented approach of designing fast interconnection
hardware and a system library with a well-defined and well-known user interface has lead
to a workstation cluster environment that is well-suited for parallel processing. With
low communication latencies, minimal protocol, and no operating system overhead, it
is possible to build effective parallel systems using off-the-shelf workstations. While
ParaStation is still a workstation cluster rather than a parallel system, the present-
ed performance compares well to parallel systems. ParaStation’s flexibility, scalability
(from 2 to 100+ nodes), portability of applications (providing standard environments
like PVM, P4, and Unix sockets), and the achieved performance level have led us to
market ParaStation?. The additional cost per workstation for a ParaStation communi-
cation adapter is marginal® compared to the price of a fully equipped workstation. In
contrast to other high-speed networks such as ATM and FiberChannel, there are no
additional costs for central switching components within ParaStation.

In future, we will work on next-generation hardware, ports to other platforms, and
support for various programming environments. Current issues for a new network design
are fiber-optic links and flexible DMA engines to reach an application-to-application
bandwidth of about 100 Mbyte/s. Second, due to the PCI-bus interface, the ParaStation
system is not limited to Alpha platforms. Currently, we are working on the PC/Linux
platform. PCs running Windows NT are scheduled and Alphas running either Linux
or NT will follow. Finally, we plan to support optimized versions of MPI as a future
standard as well as an optimized PVM as a de facto standard directly within the
ParaStation system layer. This will give PVM/MPI applications a performance boost
over a socket-based implementation. Besides PVM/MPI, Active Messages and Fast
Messages are both considered as additional interfaces to the system layer.

References

[1] Thomas E. Anderson, David E. Culler, and David A. Patterson. A Case for NOW
(Network of Workstations). IEEE Micro, 15(1):54-64, February 1995.

[2] Anindya Basu, Vineet Buch, Werner Vogels, and Thorsten von Eicken. U-net: A
user-level network interface for parallel and distributed computing. In Proc. of
the 15th ACM Symposium on Operating Systems Principles, Copper Mountain,
Colorado, December 3-6, 1995.

Zsee: http:/ /wwwipd.ira.uka.de/parastation
32800 DM for the communication board, including all software.

3]

[4]

[5]

[6]

7]

8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A. Beguelin, J. Dongarra, Al Geist, W. Jiang, R. Manchek, and V. Sunderam. PVM
3 User’s Guide and Reference Manual. ORNL/TM-12187, Oak Ridge National
Laboratory, May 1993.

Matthias A. Blumrich, Cezary Dubnicki, Edward W. Felten, Kai Li, and Malena R.
Mesarina. Virtual-Memory-Mapped Network Interfaces. IEEE Micro, 15(1):21-28,
February 1995.

Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik,
Charles L. Seitz, Jarov N. Seizovic, and Wen-King Su. Myrinet: A Gigabit-per-
Second Local Area Network. IEEE Micro, 15(1):29-36, February 1995.

Ralph Buttler and Ewing Lusk. User’s Guide to the p4 Parallel Programmimg
System. ANL-92/17, Argonne National Laboratory, October 1992.

J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley,
D. Walker, and R. C. Whaley. ScalLAPACK: A Portable Linear Algebra Library
for Distributed Memory Computers — Design Issues and Performance. Technical
Report UT CS-95-283, LAPACK Working Note #95, University of Tennesee, 1995.

William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI. MIT-Press, 1994.

R. J. Harrison. Portable tools and applications for parallel computers. International
Journal on Quantum Chem., 40:847-863, 1991.

IEEE. IEEE — P1596 Draft Document. Scalable Coherence Interface Draft 2.0,
March 1992.

Ron Minnich, Dan Burns, and Frank Hady. The Memory-Integrated Network
Interface. IEEE Micro, 15(1):11-20, February 1995.

Andreas G. Nowatzyk, Michael C. Browne, Edmund J. Kelly, and Michael Parkin.
S-connect: from networks of workstations to supercomputer performance. In Pro-
ceedings of the 22nd International Symposium on Computer Architecture (ISCA),
Santa Margherita Ligure, Italy, pages 71-82, June 22-24 1995.

Knut Omang. Performance results from SALMON, a Cluster of Workstations
Connected by SCI. Technical Report 208, University of Oslo, Department of In-
formatics, November 1995.

Scott Pakin, Mario Lauria, and Andrew Chien. High Performance Messaging on
Workstations: Illinois Fast Messages (FM) for Myrinet. In Proceedings of the
1995 ACM/IEEE Supercomputing Conference, San Diego, California, December
3-8 1995.

Peter Ross. Unix 7™ clusters for technical computing. Technical report, Digital
Equipment Coropration, December 1995.

Thorsten von Eicken, Anindya Basu, and Vineet Buch. Low-Latency Communi-
cation Over ATM Networks Using Active Messages. IEEE Micro, 15(1):46-53,
February 1995.

