Using Workstations as Building Blocks for Parallel Computing

Thomas M. Warschko, Joachim M. Blum, and Walter F. Tichy
University of Karlsruhe, Dept. of Informatics*

In: Allen Kent and James G Williams, editors, Encyclopedia of Computer
Science and Technology, pages 373--391 Marcel Dekker, INC., New York, Basel.

Abstract

The key to efficient parallel computing on workstations clusters is a communication sub-
system that removes the operating system from the communication path and eliminates
all unnecessary protocol overhead. At the same time, protection and a stable multi-user,
multiprogrammed environment cannot be sacrificed.

We have developed a communication subsystem, called ParaStation2, which fulfills
these requirements. Its one-way latency is 14.5us to 18us (depending on the hardware
platform) and throughput is 65 to 90 MByte/s, which compares well with other ap-
proaches. We were able to achieve an application performance of 5.3 GFLOP running a
matrix multiplication on 8 DEC Alpha machines (211644, 500 MHz).

ParaStation2 offers standard programming interfaces, including PVM, MPI, Unix sock-
ets, Java sockets, and Java RMI. These interfaces allow parallel applications to be ported
to ParaStation2 with minimal effort. The system is implemented on a variety of platforms,
including DEC Alpha workstations running Digital Unix, and Intel PCs and DEC Alpha’s
running Linux.

Keywords: Workstation Cluster, High-Performance Cluster Computing, Parallel and Dis-
tributed Computing, High-Speed Interconnects, User-Level Communication.

1 Introduction and Motivation

Workstation clusters coupled by high-speed interconnection networks offer a cost-effective
and scalable alternative to monolithic supercomputers. In contrast to supercomputers and
parallel machines, clustered workstations rely on standardized communication hardware and
communication protocols developed for local-area networks and not for parallel computing.
As communication hardware is getting faster and faster, the communication performance
is now limited by the processing overhead of the operating system and the protocol stack,
rather than the network itself. Thus, users who upgrade from ethernet to, e.g., ATM, failed to
achive an application speedup comparable to the improvement of the raw communication per-
formance. The peak bandwidth in high-speed networks is often achieved only with extremely
large message sizes, and there is no improvement at all when communication is based on small
messages. Exchanging small messages, however, is a key issue in parallel computing. Another
network-related problem is the scalability of the network. A typical SPMD-like parallel pro-
gram consists of a sequence of computing and communicating phases. As a consequence, all

*Now: Scarasoft AG, Mihlfelder Strafle 10, 82211 Herrsching, Germany. Email:
{warschko,blum }@scarasoft.com

nodes either compute, not using any network, or exchange data, generating bursty traffic on
the network. Burst traffic in LAN topologies sharing a physical medium (bus or ring) results
in a worst-case behaviour of the network, causing high latencies and low throughput. In con-
trast, MPP networks use higher-dimensional topologies such as grids or hypercubes, where
bandwidth and bisection-bandwidth increases with the number of connected nodes. Thus, the
critical parameters for a network well-suited for parallel computation are

e latency, when transmitting small messages,
e throughput, when transmitting large messages, and

e scalability, when increasing the number of compute nodes.

In addition to these hardware-related parameters, the functional behaviour of the network
should be amenable to minimal protocol stacks. In contrast to most local-area networks, MPP
networks offer reliable data transmission in combination with hardware-based flow control. As
a consequence, traditional protocol functionality such as window-based flow control, acknowl-
edgement of packages, and checksum processing can be reduced to a minimum (or even be left
out). If the network further guarantees in-order delivery of packets, the fragmentation and
efragmentation task of a protocol is much simpler, because incoming packets do not have to
be rearranged into the correct sequence. Implementing as much protocol-related functionality
as possible within the network interface results in a minimal and efficient protocol.

The most promising technique to speed up protocol processing is to move it out of the
operating system kernel into the address space of a user process. Nevertheless, there are two
disadvantages using a user-level-communication approach. First, the correct interaction and
a certain level of protection between competiting processes has to be maintained. This is
necessary, because the operating system as the coordinating instance is no longer on the
communication path. This problem is either solved by restricting the network access to a
single process, or by implementing mechanisms, which ensure correct intercation between
several processes. These mechanisms reside in a software layer between the network interface
and the application program. The second critical issue is the design of the user interface to
the network. Often vendors support proprietary APIs (e.g., AAL5 for ATM, or Myricom’s
API for Myrinet) and research groups propose novel but nonstandard communication models
(e.g., ActiveMessages, or Memory Mapped Communication), but for reasons of portability a
user would prefer a standardized and well-known interface. Thus, the key issues for the design
of an efficient communication subsystem are

e sharing the physical network among several processes,
e providing protection between processes using the network simultaneously,

e removing kernel overhead and traditional network protocols from the communication
path, and

e still providing well-known programming interfaces.

ParaStation2 is an example of a user-level communication subsystem that is designed with
all the given criteria in mind. To reach the goal of efficiency, the kernel is removed from the
communication path and all hardware interfacing and protocol processing is done at user

level. Correct interaction among concurrent processes is ensured within the system library
at user level using semaphores. Besides proprietary user interfaces, we decided to provide an
emulation of the standard Unix socket interface on top of our system layer as well as optimized
versions of PVM and MPL.

This article describes the ParaStation2 architecture and related approaches (section 2),
starting with a description of the ParaStation2 network interface (section 3) and the Para-
Station2 software architecture (section 4). Various benchmarks are presented in section 5.

2 Cluster Projects

There are several approaches targeting efficient parallel computing on workstation clusters
which can be classified according to the communication model used: memory mapped com-
munication vs. message passing.

Memory mapped communication systems such as Digital’s MemoryChannel [1], SCI-based
SALMON |2, 3], Sun’s S-Connect [4], SHRIMP [5] and virtual memory mapped communi-
cation (VMMC and VMMC-II) [6] from Princeton University map remote memory into the
applications address space, allowing user processes to communicate without expensive buffer
management and without system calls across the protection boundary separating user pro-
cesses from the operation system kernel.

In contrast to these approaches, message passing systems such as Active Messages [7] and
Active Messages-II [8] for the Berkeley NOW cluster [9], Active-Messages for ATM-based U-
Net [10], Illinois Fast Messages [11], the link-level flow control protocol (LFC) [12] from the
distributed ASCI supercomputer, PM [13] from the Real World Computing Partnership in
Japan, the basic interface for parallelism from the University of Lyon (BIP) [14], Hamlyn [15],
Trapeze [16], and ParaStation focus on variations of message-passing environments rather than
a virtual shared memory. As von Eicken et al. pointed out [7], recent workstation operating
systems do not support a uniform address space, so virtual shared memory is difficult to
implement.

The Myrinet [17] interconnection hardware can be used to implement both basic communi-
cation models (messages passing and virtual memory mapped communication). The Berkeley
NOW cluster, the Illinois HPVM cluster, Princeton’s VMMOC-II cluster, the Dutch ASCI clus-
ter, the french BIP cluster, the japanese PM cluster, Trapeze, Hamlyn, and ParaStation2 all
use Myrinet.

3 The ParaStation2 Network Interface

ParaStation was originally developed for the ParaStation hardware [18], a self-routing net-
work with autonomous distributed switching, hardware flow-control at link-level combined
with a back-pressure mechanism, and a reliable and deadlock-free transmission of variable
sized packets (up to 512 byte). This base system is now being adopted to the Myrinet hard-
ware, which has a fully programmable network interface and a much better base performance
than the original ParaStation hardware. The major difference is the absence of reliable data
transmission, which has to be implemented at network interface level on the Myrinet hardware
(see sections 3.1 and 3.2).

The Myrinet adapter uses a 32bit RISC CPU called LanAl, fast SRAM memory (up to
1 MByte) and three programmable DMA engines — two on the network side to send and

receive packets and one as interface to the host. The LanAl is fully programmable (in C /
C++) and the necessary development kit (especially a modified gcec compiler) is available from
Myricom. In fact this capability in addition to the high performance of the Myrinet hardware
was the main criterion for choosing Myrinet as the hardware platform for ParaStation2.

3.1 Design considerations

The major questions to answer is how to interface the Myrinet hardware to the rest of the
ParaStation software, especially the upper layers with their variety of implemented protocols
(Ports, Sockets, Active Messages, MPI, PVM, FastRPC, Java Sockets and RMI). There are
three different approaches:

1. Emulating ParaStation on the Myrinet adapter: Simulating ParaStation’s transmission
FIFO with a small LanAl program running on the Myrinet adapter would not be a
problem. But as ParaStation is using programmed I/O to receive incoming packets this
approach would lead to an unacceptable performance (see [19]).

2. Emulating ParaStation at software level: As the ParaStation system already has a small
hardware dependent software layer called HAL (hardware abstraction layer), this ap-
proach allows the use of all Myrinet specific communication features as well as a simple
interface to the upper protocol layers of the ParaStation system.

3. Designing a new system: This approach would lead to an ideal system and probably
the best performance, but we would have to rewrite or redesign most parts of the the
ParaStation system.

Because of its simplicity, we choose the second strategy to interface the existing ParaStation
software to the Myrinet hardware. The second question to answer is how to guarantee reliable
transmission of packets with the Myrinet hardware. As said before, the original ParaStation
hardware offers reliable and deadlock free packet transmission as long as the receiver keeps
accepting packets. Myrinet instead discards packets (after blocking a certain amount of time)
which may happen when the receiver runs out of resources or is unable to receive packets fast
enough. Additionally the Myrinet hardware seems to lose packets under certain circumstances,
e.g. in heavy bidirectional traffic with small packets. The upper layers of the ParaStation
system rely on a reliable data transmission, so a low level flow control mechanism — either
within the Myrinet control program running on the LanAl processor or as part of the HAL
interface — is required.

3.2 Implementation of the Myrinet Control Program
This section explains the basic ideas of our reliable transmission protocol, how it works and
how it is implemented.

3.2.1 Basic Idea

The basic idea of our reliable transmission protocol is that every data packet has to be
acknowledged using a technique called positive acknowledgement with retransmission. This
technique is well known and used as basic principle within the TCP protocol [20, 21]. The
sender keeps a record of each packet it sends in one of its transmission buffers and waits for an

acknowledgement before it releases the buffer. The sender also starts a timer when it sends a
packet and retransmits the packets if the timer expires before an acknowledgement arrives. To
achieve better performance our protocol uses multiple buffers and allows multiple outstanding
ACK’s, a technique known as sliding windows [20, 21]. The current implementation of our
protocol uses 8-bit sequence numbers and a window size of 8 packets. In case of a corrupted
or lost packet (or ACK) our protocol implements a go back N behaviour, retransmitting the
first unacknowledged and all subsequent packets, rather than using a selective retransmis-
sion strategy. In contrast to the TCP protocol, the ParaStation2 protocol also uses negative
acknowledgements (NACK). In case of insufficient buffer space the receiver sends a NACK
back to the sender to prevent further message transmission. As usual, the NACK stops the
transmission of further packets and triggers the retransmission of the rejected packet(s).

3.2.2 Basic operation

Figure 1 shows the basic operation during message transmission of the ParaStation2 proto-
col. The basic protocol has four independent parts: (a) the interaction between the sending
application and the sender network interface (NI), (b) the interaction between the sending
and the receiving NI, (c) the interaction between the receiving NI and the receiving host, and
(d) the interaction between the receiving application and the host.

Myrinet interface i ’ + ‘ Myrinet interface
(6) (A)
reveive ACK @) 5 check buffer
()] receive | send
send data data ACK
1 IDLE
2 | InTransit
3
send ring 4
5
6
@] 7
notify host receive ring 8

(8) receive ring
IDLE 2 copy data& notify

In Transit copy data
& notify
© a—
check for new
1 packets ©) /

check buffer receive data

send ring
status

m«l‘mmhwwp

Host A (sender) Host B (receiver)

Figure 1: Data transmission in ParaStation2

First, the sender checks if there is a free send buffer (step 1). This is accomplished by a
simple table lookup in the host memory, which reflects the status of the buffers of the send
ring located in the fast SRAM of the network interface (Myrinet adapter). If there is buffer
space available, the sender copies (step 2) the data to a free slot of the circular send buffer
located in the network interface (NI) using programmed I/O. Afterwards the NI is notified
(a descriptor is written) that the used slot in the send ring is ready for transmission and the
buffer in host memory is marked as in transit. A detailed description of the buffer handling
is given in section 3.2.3. In step (3), the NI sends the data to the network using its DMA
engines.

When the NI receives a packet (step 4) it stores the packet in a free slot of the receive ring
using its receive DM A engine. The flow control protocol ensures that there is at least one free
slot in the receive ring to store the incoming packet. Once the packet is received completely
and if there is another free slot in the receive ring, the flow control protocol acknowledges the
received packet (step 5). The flow control mechanism is discussed in section 3.2.4. As soon
as the sender receives the ACK (step 6), it releases the slot in the send ring and the host is
notified (step 7) to update the status of the send ring.

In the receiving NI the process of reading data from the network is completely decoupled
from the transmission of data to the host memory. When a complete packet has been received
from the network, the NI checks for a free receive buffer in the host memory (step A). If
there is no buffer space available, the packet will stay in the NI until a host buffer becomes
available. Otherwise the NI copies the data into host memory using DMA and notifies the host
about the reception of a new packet by writing a packet descriptor (step B). Concurrently,
the application software checks (polls) for new packets (step C) and eventually, after a packet
descriptor has been written in step (B), the data is copied to application memory (step D).

Obviously, the data transmission phases in the basic protocol (step 2, 3, 4, and B) can
be pipelined between consecutive packets. The ring buffers in the NI (sender and receiver)
are used to decouple the NI from the host processor. At the sender, the host is able to copy
packets to the NI as long as there is buffer space available although the NI itself might be
waiting for acknowledgements. The NI uses a transmission window to allow a certain amount
of outstanding acknowledgements which must not necessarily equal the size of the send ring.
At the receiver the NI receive ring is used to temporarily store packets if the host in not able
to process the incoming packets fast enough.

3.2.3 Buffer handling

Each buffer or slot in one of the send or receive rings can be in one of the following states:

IDLE: The buffer is empty and can be used to store a packet (up to 8192 byte).

INTRANSIT: This buffer is currently involved in a send or receive operation, which has been
started but which is still active.

READY: This buffer is ready for further operation either a send to the receiver NI (if it’s a
send buffer) or a transfer to host memory (if it’s a receive buffer).

RETRANSMIT: This buffer is marked for retransmission, because of a negative acknowledgement
or a timeout (send buffer only).

Figure 2 shows the state transition diagrams for both send and receive buffers in the network
interface.

At the sender the NI waits until a send buffer becomes READY, which is accomplished by the
host after it has copied the data and the packet descriptor to the NI (step 2 in figure 1). After
the buffer becomes READY the NI starts a send operation (network DMA) and marks the buffer
INTRANSIT. When an acknowledgement (ACK) for this buffer arrives (step 6 in figure 1), the
buffer is released (step 7) and marked IDLE. If a negative acknowledgement (NACK) arrives
or the ACK does not arrive in time (or gets lost) the buffer is marked for retransmission
(RETRANSMIT). The next time the NI tries to send a packet it sees the RETRANSMIT buffer and

send buffer handling reveive buffer handling

receive ACK ACK received, NACK received

* CRC error, data (out of sequence)
send IN
IDLE READY TRANSIT 1
A /

store packet receive NACK /
resend .
(host) v buffer timeout

send

RETRANSMIT NACK

Figure 2: Buffer handling in sender and receiver

resends this buffer, changing the state to INTRANSIT again. This RETRANSMIT — INTRANSIT
cycle may happen several times until an ACK arrives and the buffer is marked IDLE.

At the receiver the buffer handling is quite similar (see figure 2). As soon as the NI sees
an incoming packet it starts a receive DMA operation and the state of the associated buffer
changes from IDLE to INTRANSIT (see step 4 in figure 1). Assuming that the received packet
contains user data, is not corrupted, and has a valid sequence number! the NI checks for
another free buffer in the receive ring. If there is another free buffer it sends an ACK back
to the sender and the buffer is marked READY. Otherwise a NACK is sent out, the packet
discarded and the buffer released immediately (marked IDLE). The check for a second free
buffer in the receive ring ensures that there is at least one free buffer to receive incoming
packets anytime, because any packet eating up the last buffer will be discarded. When the
received packet contains protocol data (ACK or NACK), the NI processes the packet and
releases the buffer. In case of an error (CRC) the buffer is marked IDLE immediately without
further processing. If the received data packet does not have a valid sequence number, the
packet is discarded and the sender is notified by sending a NACK back. Thus the receiver
refuses to accept out-of-sequence data and waits until the sender will resend the missing
packet.

3.2.4 Flow control protocol

ParaStation2 uses a flow control protocol with a fixed sized transmission window and 8 bit
sequence numbers (related to individual sender/receiver pairs), where each packet has to be
acknowledged (either with a positive or a negative acknowledgement) in combination with a
timeout and retransmission mechanism in case that an acknowledgement gets lost or does not
arrive within a certain amount of time. The protocol assumes the hardware to be unreliable
and is able to track any number of corrupted or lost packets (containing either user data
or protocol information). Table 1 gives an overview of possible cases within the protocol, an
explanation of each case as well as the resulting action initiated.

When a data packet is received, the NI compares the sequence number of the packet
with the assumed sequence number for the sending node. If the numbers are equal, the
received packet is the one that is expected and the NI continues with its regular operation.
A received sequence number smaller than expected indicates a duplicated data packet caused
by a lost or late ACK. Thus the correct action to take is to resend the ACK, because the

'For a discussion of the ACK/NACK protocol see section 3.2.4.

packet type | sequence check | explanation resulting action
< lost ACK resend ACK
DATA = ok check buffer space
(see fig 2)
> lost data ignore & send NACK
< duplicate ACK ignore packet
ACK = ok release buffer
> previous ACK lost | ignore packet
NACK none mark buffer for
retransmission
CRC none error detected ignore packet

Table 1: Packet processing within receiver

sender expects one. Is the received sequence number larger than expected, the packet with
the correct sequence number has been corrupted (CRC) or lost. As the protocol does not
have a selective retransmission mechanism the packet is simply discarded and the sender is
notified with a negative acknowledgement (NACK). Thus, this packet will be retransmitted
later either because the sender got the NACK, or because of a timeout. As the missing packet
also causes a timeout at the sending side, the packets will eventually arrive in the correct
order.

On the reception of an ACK packet, the NI also checks the sequence number and if it
got the expected number it continues processing and releases the acknowledged buffer. If
the received sequence number is smaller than assumed, we have received a duplicated ACK
because the sender ran into a transmission timeout before the correct ACK was received and
the receiver has resent an ACK upon the arrival of an already acknowledged data packet?.
The response in this case is simply to ignore the ACK. A received sequence number larger
than what is expected indicates that the correct ACK has been corrupted or lost. Thus the
action taken is to ignore the ACK, but the associated buffer is marked for retransmission to
force the receiver to resend the ACK. The buffer associated with the assumed (and missing)
ACK will timeout and be resent which also forces the receiver to resend the ACK.

A received NACK packet does not need sequence checking; the associated buffer is marked
for retransmission as long as it is in the INTRANSIT state. Otherwise the NACK is ignored
(the buffer is in RETANSMIT state anyway). In case of a CRC error the packet is dropped
immediately and no further action is initiated, because the protocol is unable to detect errors
in the protocol header.

The resulting protocol is able to handle any number of corrupted or lost packets contain-
ing either user data or protocol information, as long as the NI and the connection between
the incorporated nodes is operational. The protocol was developed to ensure reliability of
data transmission at NI level, not to handle hardware failures in terms of fault tolerance.
The protocol itself can be optimized in some cases (e.g. better handling of ACK’s with a
larger sequence number), but this is left to future implementations. In comparison to existing
protocols, this protocol can roughly be classified as a variation of the TCP protocol (using
NACK’s and a fixed size transmission window).

®This case may sound strange, but we’ve seen this behaviour several times.

4 ParaStation User-Level Communication (PULC)

The major goal is to support a standardized, but efficient programming interface such as UNIX
sockets on top of the ParaStation network. In contrast to other approaches, the ParaStation
network is used by parallel applications exclusively and is not intended as a replacement for
a common LAN, so associated protocols (e.g., TCP/IP) can be eliminated. These properties
allow using specialized network features, optimized point-to-point protocols, and controlling
the network at user level without operating system interaction (see figure 3).

Application
PVM PS-PVM User Environment
I I
User Libc Libpsp System Library
System
TCP/IP Network Protocols
I
Ethernet Device Driver
|
[Network | [Network | Hardware

Figure 3: User-level communication highway

The ParaStation protocol software within our system library (libpsp) implements multi-
ple logical communication channels on a physical link. This is essential to set up a mul-
tiuser/multiprogramming environment. Protocol optimization is done by minimizing protocol
headers and eliminating buffering whenever possible. Sending a message is implemented as
zero-copy protocol which transfers the data directly from user-space to the network inter-
face. Zero-copy behaviour during message reception is achieved when the pending message is
addressed to the receiving process; otherwise the message is copied once into a buffer in a com-
mon message area. Within the ParaStation network protocol, operating system interaction is
completely eliminated, removing it from the critical path of data transmission. The missing
functionality to support a multiuser environment is realized at user level in the ParaStation
system library.

4.1 Architecture of PULC

Figure 4 gives an overview of the three major parts of PULC: The PULC interface, the PULC
message handler, and the PULC resource manager.

PULC Programming Interface: This module acts as the programming interface for any
application. The design is not restricted to a particular interface definition such as Unix

PULC Interface

—o P
°
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, / PULC Resource.
Pulc Message Area {]

Manager (PSID)

: Sun]
‘ @ :
! 5 | 5| eee ;
: 2|3 1

: ‘ PULC Protocol Switch ‘ 3

PULC Message Handler

Rawdata

Port
User Defined

Figure 4: PULC Architecture

sockets. It is possible and reasonable to have several interfaces (or protocols) residing
side by side, each accessible through its own API. Thus, different APIs and protocols
can be implemented to support a different quality of service, ranging from standardized
interfaces (i.e. TCP or UDP sockets), widely used programming environments (i.e. MPI
or PVM), to specialized and proprietary APIs (ParaStation ports and a true zero copy
protocol called Rawdata). All in all, the PULC interface is the programmer-visible
interface to all implemented protocols.

PULC Message Handler: The message handler is responsible to handle all kinds of (low
level) data transfer, especially incoming and outgoing messages, and is the only part to
interact directly with the hardware. It consists of a protocol-independent part and a spe-
cific implementation for each protocol defined within PULC. The protocol-independent
part is the protocol switch which dispatches incoming messages and demultiplexes them
to protocol specific receive handlers. To get high-speed communication, the protocols
have to be as lean as possible. Thus, PULC protocols are not layered on top of each
other; they reside side by side. Sending a message avoids any intermediate buffering.
After checking the data buffer, the sender directly transfers the data to the hardware.
When receiving a message, the data is first written to a message buffer and then deliv-
ered to the application. Only the Rawdata protocol behaves differently and copies the
received data directly to its final destination in the application space.

PULC Resource Manager: This module is implemented as a Unix daemon process (PSID)
and supervises allocated resources, cleans up after application shutdowns, and controls
access to common resources. Thus, it takes care of tasks usually managed by the operat-
ing system. All PSIDs communicate with each other. They exchange local information
and transmit demands of local processes to the PSID of a remote node. With this coop-
eration, PULC offers a distributed resource management and supports a single system
view.

To be portable amongst different hardware platforms and operating systems, PULC imple-

ments all hardware and operating system specific parts in a module called hardware abstrac-
tion layer (HAL). Thus, choosing a different interconnection network as discussed in section 3.1

10

only forces the adoption of the HAL to the quality of service the new communication hardware
provides.

One possible drawback in the design of user level protocols is using a polling strategy to
wait for the arrival of new messages, because polling consumes CPU cycles while waiting. If
the sender is on the same node, the sender is slowed down and it takes even longer to execute
the send call for which the receiver is waiting for. Thus, PULC uses different co-scheduling
strategies to hand off the CPU to the sender. Therefore even node-local message transfers
have acceptable latencies.

The following sections presents the three main parts of PULC — the resource manager,
the message handler, and the programming interface — in detail.

4.2 PSID: The PULC Coordinator

Since PULC is entirely implemented in user-space, the operating system does not manage the
resources. This task is done by a resource manager (PSID: ParaStation Daemon). It cleans
up resources of dead processes and organizes access to the message area. Before a process can
communicate with PULC, the process has to register with the PSID. The PSID can grant or
deny access to the message area and the hardware.

The PSID also checks if the version used by the PULC interface and the PULC message
handler are compatible, which makes corruption of data impossible. The PSID can restrict the
access to the communication subsystem to a specific user or a maximum number of processes.
Thus it is possible to run the cluster in an optimized way, since multiple processes slow down
application execution due to scheduling overhead.

All PSIDs communicate with each other. They exchange local information and transmit
demands of local processes to the PSID of a remote node. With this cooperation, PULC offers
a distributed resource management and provides the semantic of a single system. PULC allows
spawning (remote execution) and killing (remote termination) processes on any node of the
cluster. To do so, the PSID first transmits a request to the PSID of the remote node. The
remote PSID then uses regular operation system calls to spawn (fork() and exec()) or kill
(signal()) processes. Afterwards, the spawned process runs with the same user id as the
spawning process. Furthermore, PULC redirects the output of a spawned process back to the
terminal of the parent process. Therefore it offers a transparent view of the cluster.

The PSIDs periodically exchange load information. Using this information, load balancing
is possible when spawning new tasks. Several strategies are feasible:

e Spawn a new task on a specified node: No selection is done by PULC. The spawn
request is transfered to the remote PSID, which creates the new task. As result a new
task identifier is returned.

e Spawn a task on the next node: PULC keeps track of the node which was used to spawn
the last task on. This strategy selects the next node by incrementing the node number.

e Spawn a task on an unloaded node: Before spawning, PULC sorts the available nodes
by their load. After that, PULC spawns on the node with the least load.

These strategies allow a PULC cluster to run in a balanced fashion, while still allowing

the programmer to specify an explicit node layout, when an application requires a specific
communication pattern.

11

4.3 The PULC Message Handler

The PULC message handler is responsible for sending and receiving messages.

4.3.1 Sending messages

Sending a message avoids any intermediate buffering. After checking the buffer, the sender
directly transfers the data to the hardware. The specific protocols inside the message handler
are responsible for the coding of the protocol header information. PULC doesn’t restrict the
length or form of the header. PULC just specifies the form of the hardware header with its
protocol id. The rest of the message header must be interpretable by the protocol specific
receive handler. If the receiver is on the local node, the receive handler optimizes message
transfer by directly calling the appropriate receive handler of the protocol.

4.3.2 Receiving a message

The major task while receiving a message is demultiplexing of incoming messages. Demulti-
plexing means to distinguish between different protocols and in a multiprogramming environ-
ment to distinguish between different receiving processes.

Demultiplexing of protocols is accomplished within the PULC protocol switch, which reads
the hardware dependent header of the message with its unique protocol identifier. After
decoding the identifier, the protocol switch directly transfers control to the receive handler
of the protocol, which reads the rest of the message. This header forwarding is extremely
fast and avoids any unnecessary copy stage. After that its up to the protocol specific part
where to store the incoming data — either directly in user data structures, as it is done in
the rawdata protocol, or queuing the data in protocol specific message queues (TCP, UDP,
PORT-M/S/D).

The second demultiplexing task is to distinguish between different receiving processes,
which is accomplished within the protocol specific part of the message handler. In general,
the message handler stores the incoming messages in a common accessible message pool (a
memory segment shared between all PULC processes) by ordering them into protocol specific
message queues. These message queues form the interface between the PULC message handler
and the PULC interface (which is described in the next section). Thus handling multiple
concurrent processes does not present a problem, because all these processes use different
protocols and different port identifiers for their connections. Each port has it’s own queue
and the message handler delivers incoming messages to the associated queue.

PULC uses several optimizations to speed up message reception. Some of these are preal-
located fragments, destination prediction, and end queuing.

e Preallocated fragments guarantees that there is always an allocated fragment which is
used by the message handlers to enqueue a message in a port. Thus receive handlers do
not have to spend time to allocate a new fragments.

o With destination prediction PULC tries to predict the destination of the next fragment.
It keeps track of recently addressed ports and therefore minimizes table lookups for
destination ports. This is reasonable, because a large message is fragmented into different
parts and there is a high probability that these parts are received one after another.

12

e When queuing a fragment end queuing does the same technique inside a port. It knows
which fragment was queued last and checks if the new fragment is related to the old
one. If they are related, this technique speeds up queuing.

The following subsections describe the protocol specific actions of the predefined message
handlers.

Rawdata Protocol Therawdata protocol is a true zero copy protocol. If the receive handler
knows the final destination of a message at the time of receiving, it directly transfers the
data to this location. This kind of message transaction minimizes latencies and maximizes
throughput. If the receive handler does not know or can not access the final destination, the
fragments are placed in a queue of the rawdata port. Since there is only one rawdata port on
a node, only one application can use this protocol at a time. This is a restriction similar to
many other user-level protocols.

Port-M/S/D Protocol The Port-M/S/D protocol is a frontend to the PULC functionality.
It mainly implements additional functionality which is not available within the standard UNIX
socket specification. The Port protocols offers dynamic process creation, group scheduling, and
a testbed for new functionalities. The differences between Port-M (multiple stream), Port-S
(single stream), and Port-D (datagrams) is just which queuing function the receive handler
calls.

TCP/UDP Protocols TCP and UDP protocols in PULC use ports as their communi-
cation channel. UDP and TCP have differences in connection establishment and they use
different queuing strategies: TCP uses the single stream strategy whereas UDP uses the data-
gram strategy. In ParaStation, the data transfer is reliable and so UDP derives this property
from the underlying hardware.

Other Protocols PULC is open for user defined protocols. New protocols plug into the
protocol switch and the switch will redirect fragments to the new protocols. New protocols
have to ensure correct locking to exclude deadlocks, as they have to co-exist with the prede-
fined protocols. This co-existence allows implementing new protocols with the same efficiency
as the predefined PULC protocols.

4.4 The PULC Interface

Each protocol in the message handler can have its own interface. The interface is the coun-
terpart of the message handler. The message handler receives a message and puts it in the
message area, whereas the interface functions get these messages as soon as they are received
completely. The cooperation between the interface functions and the receive handler of the
protocol includes correct locking of the port and its message queues. Correct interaction is
necessary since PULC does not have control of the scheduling decisions of the operating
system. Thus the receive handler could be in a critical section while the operating system
switches to a process which conflicts with this critical section. This would leave PULC in an
inconsistent state.

A process can use several interfaces at the same time. E.g., it can use the sockets for
regular communication and PULC'’s ability to spawn processes through the Port-M interface.

13

Rawdata Interface The Rawdata interface offers a true zero copy operation when receiving
messages, if the final destination in memory space is accessible by the PULC interface at the
time of reception. In case that the message handler runs in the address space of the rawdata
process this is always true. If the message handler runs on the communication processor
the final destination must reside in a mapped and pinned-down message area, because the
communication processor needs a physical address of destination memory. During receive, the
rawdata interface first checks the rawdata port if any appropriate message is available. If there
is not any message available, it registers the receive buffer at the rawdata receive handler,
which places the incoming data into this buffer. VMMC-II [22] uses a similar approach, which
they call transfer redirection.

Port Interface The interface is similar to the standard Unix socket interface, but has ad-
ditionally functionality for dynamic process creation on remote nodes (spawning) and logging
of the child processes. The ports are addressed by an index (descriptor) into the own private
port table. A destination port is addressed by a port identifier which is a combination of the
node number and the peer address of the port. The message queues of the ports are either
single streams, multiple streams, or datagram oriented as described in section 4.3.2.

Socket Interface The socket interface to PULC is the same as for BSD Unix sockets —
it even uses the same name space. This allows easy porting of applications and libraries to
PULC, by simply linking the application code with an additional library. Nevertheless, PULC
provides a fall-back mechanism, which redirects calls to destination nodes not reachable inside
the PULC cluster transparently to the operating system.

PULC sockets use specially tuned methods with caching of recently used structures. This
allows an extremely fast communication with minimal protocol overhead. Each socket has a
port as its communication channel. The socket receive handler only knows about the ports
and uses different enqueuing strategies for UDP (datagram ports) and TCP sockets (single
stream ports). The socket interface provides the interaction between the communication ports
and the socket descriptor. Sockets can be shared among different processes due to a fork()
call and can be inherited by a exec() call. During fork(), the socket is duplicated but both
sockets share the same communication port (the count attribute of the port is incremented).
Thus, both processes have access to the message queue of the socket. After an exec() and
a reconnection to PULC the sockets of the message area are inserted into the private socket
descriptor table. Therefore the process has access to these abstractions again.

User Defined Interfaces PULC is open for extensions. Users are able to define their own
interfaces to existing message handlers or to define a new message handler and an interface
to it. The interfaces just have to ensure that the interaction with the used message handler
is correct. We plan to support other interfaces and message handlers in the near future.
Candidates for this are Active Messages, MPI, and Java RMI.

4.5 Communication Libraries on Top of PULC

There are several communication libraries built on top of PULC. Most of them are just the
standard Unix distributions on top of sockets, which are relinked with the PULC socket li-
brary. Using this technique, P4 [23] and tcgmsg [24] have been adopted to PULC. Other
programming environments, such as PVM [25], have been modified [26] in a way that they

14

can co-exist simultaneously to the standard socket implementation. This allows a direct com-
parison of operating system communication and PULC. The comparison shows that PVM
adds a significant overhead to the regular socket communication. This lead to a new approach
[27], which optimized PVM on top of the port-D interface. PULC already provides efficient
and flexible buffer management and therefore this functionality could be eliminated in the
PVM source. The resulting PSPVM2 is still interoperable with other PVMs running on any
other cluster or supercomputer.

The PULC MPI implementation is based on MPICH [28]. MPICH provides a channel
interface which hardware manufacturers can use to port MPICH to their own communication
subsystem. This channel interface is implemented on top of PULC’s port-D protocol. MPICH
on PULC uses PULC’s dynamic process creation at startup. The implementation is well-
suited for MPI-2, which is supporting dynamic process creation at run-time. It is possible to
support MPI directly as an interface of PULC. Most of the necessary functionality is already
provided in the Port protocol.

5 Performance

The benchmarks described in this section cover two different scenarios. The communication
benchmark provides information about the application-to-application performance that can be
achieved at ParaStation’s different software layers. The second scenario deals with application
performance, namely run-time efficiency and application speedup.

5.1 Basic performance of the protocol hierarchy

Table 2 compares the performance of the ParaStation2 protocol to VMMC-2 and AM-II,
which both use a reliable transmission protocol for Myrinet.

System | Latency [us] | Throughput [MByte/s]
ParaStation2 14.5 - 18 65 - 90
VMMC-2 13.4 90

AM-IT 21 31

Table 2: Performance comparison between reliable systems

The communication latency of ParaStation2 is between 14.5us and 18us (platform dependent,
see table 3) and compares well to the 13.4us of VMMC-2 (Intel/PCI/Linux platform) and
the 21us of AM-II (Sun Sparc/SBUS/Solaris platform). ParaStation2’s 65 MByte/s to 90
MByte/s throughput is as high as the 90 MByte/s of VMMC-2 (using the same platform,
see table 3), and two to three times as high as AM-II (31 MByte/s). The low performance
for AM-II is caused by the Sparc/SBUS interface and not due to the AM-II transmission
protocol.

In table 3, performance figures of all software layers in the ParaStation2 system are pre-
sented. The various levels presented are the hardware abstraction layer (HAL), which is the
lowest layer of the hierarchy, the so called ports and TCP layers, which are build on top of the
HAL, and standardized communication libraries such as MPI and PVM, which are optimized
for ParaStation2 and build on top of the ports layer. Latency is calculated as round-trip/2 for
a 4 byte ping-pong and throughput is measured using a pairwise exchange for large messages

15

(up to 32K). N/2 denotes the packet size in bytes when half of the maximum throughput is
reached. The performance data is given for three different host systems, namely a 350MHz
Pentium IT running Linux (2.0.35), a 500MHz and a 600MHz Alpha 21164 system running
Digital Unix (4.0D).

Programming interface

System Measurement HAL | Ports TCP | MPI PVM
Pentium II | Latency [ws] | 14.5 | 187 20.2 | 25 30
350 MHz Throughput [MByte/s] | 90 78 76 73 58

N/2 [Byte] | 512 | 1000 1000 | 2000 2000
Alpha 21164 | Latency [us] | 17.5 24 24 30 29
500 MHz Throughput [MByte/s| | 65 55 57 50 49

N/2 [Byte] | 512 | 500 500 | 1000 1000
Alpha 21164 | Latency [ns] | 18.0 24 25 27 32
600 MHz Throughput [MByte/s|] | 75 65 71 62 57

N/2 [Byte] | 1024 | 1000 1000 | 2000 2000

Table 3: Basic performance parameters of ParaStation2

The latency at HAL level of 14.5us to 18us is somewhat higher than for systems which do not
ensure reliable data transmission such as LFC (11.9us) or FM (13.2us) [12]. This is because
neither LFC nor FM copies the data it receives to the application and second, both LFC and
FM incorrectly assume Myrinet to be reliable. The 90 Mbyte/s throughput of ParaStation2
for the Intel platform is between FM (up to 60 MByte/s), LFC (up to 70 MByte/s), PM (90
MByte/s), and BIP (up to 125 MByte/s) [29].

Switching from a single-programming environment (HAL) to multi-programming environ-
ments (upper layers) results in a slight performance degradation regarding latency as well
as throughput. The reason for increasing latencies is due to locking overhead to ensure cor-
rect interaction between competitive applications. The decreased throughput is caused by
additional buffering, a complex buffer management, and locking overhead.

5.2 Performance at application level

Focusing only on latency and throughput is too narrow for a complete evaluation. It is nec-
essary to show that a low-latency, high-throughput communication subsystem also achieves
a reasonable application efficiency. For this reason we installed the widely used and publicly
available ScalLAPACK? library [30], which uses BLACS* [31] on top of MPI as communication
subsystem on ParaStation2. As benchmark we use the parallel matrix multiplication for gen-
eral dense matrixes from the PBLAS library, which is part of ScaLAPACK. Table 4 shows the
performance in MFLOP’s running on our 8 processor DEC-Alpha cluster (500 MHz, 21164A).
First, we have measured the uniprocessor performance of a highly optimized matrix multipli-
cation (cache aware assembler code), which acts as reference to calculate the efficiency of the
parallel versions. A uniprocessor performance of 772 to 790 MFLOP on a 500 MHz processor
proves that the program is highly optimized (IPC of more than 1.5). Obviously the parallel
version executed on an uniprocessor has to be somewhat slower, but the measured efficiency

3Scalable Linear Algebra Package.
*Basic Linear Algebra Communication Subroutines

16

Problem | Uniprocessor | 1 Node 2 Nodes 4 Nodes 6 Nodes 8 Nodes
size (n) | MFlop (Eff.) Performance in MFlop (Efficiency)
1000 782 731 1276 2304 3243 3871
(100%) | (93.5%) (81.6%) (73.6%) (69.1%) (61.9%)
2000 785 743 1359 2546 3582 4683
(100%) (94.6%) (86.6%) (81.1%) (76.1%) (74.6%)
3000 790 755 1396 2700 3908 4887
(100%) (95.6%) (88.4%) (85.4%) (82.4%) (77.3%)
4000 772 1398 2694 4044 5337
(100%) (90.5%) (87.2%) (87.3%) (86.4%)

Table 4: Parallel matrix multiplication on ParaStation2

of 93.5% to 95.6% is very high. Using more nodes, the absolute performance in MFLOP in-
creases steadily while the efficiency decreases smoothly. The maximum performance achieved
was 5.3 GFLOP using 8 nodes which is quite good compared to the 10.1 GFLOP of the 100
nodes Berkeley NOW cluster®.

Table 5 shows the performance of the same experiment using FastEthernet instead of
ParaStation2 as communication subsystem; the application code was just linked with another
MPI-library.

Problem | Uniprocessor | 1 Node 2 Nodes 4 Nodes 6 Nodes 8 Nodes
size (n) | MFlop (Eff.) Performance in MFlop (Efficiency)
1000 782 731 1085 1358 1270 1135
(100%) (93.5%) (69.4%) (43.4%) (271%) (18.1%)
2000 785 743 1274 1861 2007 1722
(100%) (94.6%) (81.2%) (59.2%) (42.6%) (27.4%)
3000 790 755 1291 2011 2121 1925
(100%) (95.6%) (81.7%) (63.6%) (44.7%) (30.5%)
4000 772 1337 2047 2342 2312
(100%) (86.6%) (66.3%) (50.6%) (37.4%)

Table 5: Parallel matrix multiplication using FastEthernet

The maximum performance achieved using FastEhternet was 2.3 GFLOP, which is far less
than the 5.3 GFLOP of ParaStation2 (only 44%). Although a small increase in performance
can be achieved while adding up to 6 processors the efficiency drops dramatically. Using more
than 6 processors even results in a performance decrease. The reason for this is due to the
different raw performance of FastEtherent and Myrinet (100 Mbit/s vs. 1280 Mbit/s) and
due to the topology of the Myrinet installation (8x8 crossbar vs. 8-port hub).

6 Conclusion

In this paper we presented the design and evaluation of ParaStation2 as example for a high-
performance cluster based on off-the-shelf workstations and PCs. The design of ParaStation2

Ssee http://now.cs.berkeley.edu

17

at hardware level focuses on how to implement a reliable transmission protocol on top of the
Myrinet hardware. This reliable data transmission is a prerequisite for the design of PULC
with it’s variety of different protocols. Again, the focus within the design of PULC is the
implementation of efficient but standardized protocol interfaces.

The evaluation of ParaStation2 shows that ParaStation2 compares well with other ap-
proaches in the cluster community using Myrinet. ParaStation2 is not the fastest systems
in terms of pure latency and throughput, but in contrast to most other approaches it of-
fers a reliable interface which is — in our experience — more important to the user than an
ultra high-speed, but unreliable interface. Similar arguments hold for the performance of
PULC. Providing a multiuser and multiprogramming environment results in a decrease in
performance, but offering standardized and well known programming interfaces justifies the
approach taken.

Furthermore, the comparison between ParaStation2 and FastEthernet shows a tremendous
gain in performance (factor 2.3) when using a carefully design communication subsystem
instead the common TCP/IP stack implementation within recent operating systems. The
achieved application performance of 5.3 GFLOPs has not been achieved before with this small
number of nodes and an efficiency of 86.4% compares well to commercial parallel machines.
All in all this proves that high-performance cluster computing using workstations and PC as
building blocks is feasible.

References

[1] Peter Ross. Unix T clusters for technical computing. Technical report, Digital Equipment
Coropration, December 1995.

[2] IEEE. IEEE — P1596 Draft Document. Scalable Coherence Interface Draft 2.0, March 1992.

[3] Knut Omang. Performance results from SALMON, a Cluster of Workstations Connected by SCI.
Technical Report 208, University of Oslo, Department of Informatics, November 1995.

[4] Andreas G. Nowatzyk, Michael C. Browne, Edmund J. Kelly, and Michael Parkin. S-connect: from
networks of workstations to supercomputer performance. In Proceedings of the 22nd International
Symposium on Computer Architecture (ISCA), Santa Margherita Ligure, Italy, pages 71-82, June
22-24 1995.

[5] Matthias A. Blumrich, Cezary Dubnicki, Edward W. Felten, Kai Li, and Malena R. Mesarina.
Virtual-Memory-Mapped Network Interfaces. IEEE Micro, 15(1):21-28, February 1995.

[6] C. Dubnicki, A. Bilas, K. Li, , and J. Philbin. Design and Implementation of Virtual Memory-
Mapped Communication on Myrinet. In 11th Int. Parallel Processing Symposium, pages 388—-396,
Geneva, Switzerland, April 1997.

[7] Thorsten von Eicken, Anindya Basu, and Vineet Buch. Low-Latency Communication Over ATM
Networks Using Active Messages. I[EEE Micro, 15(1):46-53, February 1995.

[8] B. Chung, A. Mainwaring, and D. Culler. Virtual Network Transport Protocols for Myrinet. In
Hot Interconnects’97, Stanford, CA, April 1997.

[9] Thomas E. Anderson, David E. Culler, and David A. Patterson. A Case for NOW (Network of
Workstations). IEEE Micro, 15(1):54-64, February 1995.

[10] Anindya Basu, Vineet Buch, Werner Vogels, and Thorsten von Eicken. U-net: A user-level net-
work interface for parallel and distributed computing. In Proc. of the 15th ACM Symposium on
Operating Systems Principles, Copper Mountain, Colorado, December 3-6, 1995.

18

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

[23]
[24]
[25]

[26]

[27]

Scott Pakin, Mario Lauria, and Andrew Chien. High Performance Messaging on Workstations:
Illinois Fast Messages (FM) for Myrinet. In Proceedings of the 1995 ACM/IEEE Supercomputing
Conference, San Diego, California, December 3-8 1995.

Raoul A. F. Bhoedjang, Tim Riihl, and Henri E. Bal. LFC: A Communication Substrate for
Myrinet. In Fourth Annual Conference of the Advanced School for Computing and Imaging,
Lommel, Belgium, June 1998.

H. Tezuka, F. O’Carrol, A. Hori, , and Y. Ishikawa. Pin-down Cache: A Virtual Memory Manage-
ment Technique for Zero-copy Communication. In 12th International Parallel Processing Sympo-
stum, pages 308-314, Orlando, Florida, Mar 30 - Apr 3, 1998.

L. Prylli and B. Tourancheau. Protocol Design for High Performance Networking: A Myrinet
Experience. Technical Report 97-22, LIP-ENS Lyon, July 1997.

G. Buzzard, D. Jacobson, M. MacKey, S. Marovich, and J. Wilkes. An Implementation of the
Hamlyn Sender-Managed Interface Architecture. In The 2nd USENIX Symp. on Operating Sys-
tems Design and Implementation, pages 245-259, Seattle, WA, October 1996.

K. Yocum, J. Chase, A. Gallatin, and A. Lebeck. Cut-Through Delivery in Trapeze: An Exercize
in Low-Latency Messaging. In The 6th Int. Symp. on High Performance Distributed Computing,
Portland, OR, August 1997.

Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik, Charles L. Seitz,
Jarov N. Seizovic, and Wen-King Su. Myrinet: A Gigabit-per-Second Local Area Network. IEEE
Micro, 15(1):29-36, February 1995.

Thomas M. Warschko. Effiziente Kommunikation in Parallelrechnerarchitekturen. PhD thesis,
Universitidt Karlsruhe, Fakultit fiir Informatik, March 1998. In: VDI Fortschritt-Berichte, Reihe
10, Nr. 525, VDI-Verlag, ISBN: 3-18-352510-0.

Raoul A. F. Bhoedjang, Tim Riihl, and Henri E. Bal. User-Level Network Interface Protocols.
IEEE Computer, 31(11):52-60, November 1998.

Douglas E. Comer. Internetworking with TCP/IP. Volume I: Principles, Protocols, and Archi-
tecture. Prentice-Hall International Editions, 1991.

Andrew S. Tanenbaum. Computer Networks. Prentice-Hall International Editions, second edition,
1989.

Cezary Dubnicki, Angelos Bilas, Yuqun Chen, Stefanos N. Damianakis, and Kai Li. VMMC-2:
Efficient support for reliable, connection-oriented communication. Technical Report TR-573-98,
Princeton University, Computer Science Department, February 1998.

Ralph Buttler and Ewing Lusk. User’s Guide to the p4 Parallel Programmimg System. ANL-
92/17, Argonne National Laboratory, October 1992.

R. J. Harrison. Portable tools and applications for parallel computers. International Journal on
Quantum Chem., 40:847-863, 1991.

A. Beguelin, J. Dongarra, Al Geist, W. Jiang, R. Manchek, and V. Sunderam. PVM 3 User’s
Guide and Reference Manual. ORNL/TM-12187, Oak Ridge National Laboratory, May 1993.

Joachim M. Blum, Thomas M. Warschko, and Walter F. Tichy. PSPVM: Implementing PVM
on a high-speed Interconnect for Workstation Clusters. In Proceedings of the Third Euro PVM
Users’ Group Meeting, pages 235-242, Miinchen, Germany, October 1996.

Patrick Ohly, Joachim M. Blum, Thomas M. Warschko, and Walter F. Tichy. PSPVM2: PVM for
ParaStation. In Proceedings of 1st Workshop on Cluster-Computing, pages 147-160, Chemnitz,
6. - 7. November 1997.

19

[28]

[29]

[30]

[31]

William Gropp, Ewing Lusk, and Nathan Doss adn Anthony Skjellum. A high-performance,
portable implementation of the mpi message passing interface standard. Technical report, Math-
ematics and Computer Science Division, Argonne National Laboratory and Missisipi State Uni-
versity, 1996.

Soichiro Araki, Angelos Bilas, Cezary Dubnicki, Jan Edler, Koichi Konishi, and James Philbin.
User-space communication: A quantitative study. In ACM, editor, SC’98: High Performance Net-
working and Computing: Proceedings of the 1998 ACM/IEEE SC98 Conference: Orange County
Convention Center, Orlando, Florida, USA, November 7-13, 1998. ACM Press and IEEE Com-
puter Society Press, November 1998.

J. Choi, J. Demmel, 1. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley, D. Walker, and
R. C. Whaley. ScaLAPCK: A Portable Linear Algrbra Library for Distributed Memory Computers
— Design Issues and Performance. Technical Report UT CS-95-283, LAPACK Working Note #95,
University of Tennesee, 1995.

J. Dongarra and R. C. Whaley. A user’s guide to the blacs v1.0. Technical Report UT CS-95-281,
LAPACK Working Note #94, University of Tennesee, 1995.

20

